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Humans are remarkably sensitive to the statistical structure of language. However, dif-
ferent mechanisms have been proposed to account for such statistical sensitivities. The
present study compared adult learning of syntax and the ability of two models of statis-
tical learning to simulate human performance: Simple Recurrent Networks, which learn
by predictive computation, and PARSER, which learns chunks as a byproduct of general
principles of associative learning and memory. In the first stage, a semiartificial language
paradigm was used to gather human data. In the second stage, a simulation paradigm
was then used to compare the patterns of performance of the SRN and PARSER. After
the human adults and the computational models were trained on sentences from the
semiartificial language with probabilistic syntax, their learning outcomes were com-
pared. Neither model was able to fully reproduce the human data, which may indicate
less robust statistical learning effects in adults; however, PARSER was able to simulate
more of the adult learning data than the SRN, suggesting a possible role for chunk
formation in early phases of adult learning of second language syntax.

Keywords statistical learning; second language acquisition; syntax; chunking;
PARSER; Simple Recurrent Network

Introduction

There is increasing evidence that humans are sensitive to the statistical prop-
erties inherent in language (for overviews, see Rebuschat & Williams, 2012;
Romberg & Saffran, 2010). Evidence for such sensitivity in infants and adults
comes from speech segmentation (e.g., Aslin, Saffran, & Newport, 1998;
Saffran, Aslin, & Newport, 1996), word learning (e.g., Yu & Smith, 2007),
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artificial grammar learning (e.g., Gomez & Gerken, 1999), and phrase struc-
ture and syntax learning (e.g., Saffran, 2001; Thompson & Newport, 2007). The
robustness of these findings has led many to posit that humans possess power-
ful statistical learning mechanisms (e.g., Aslin et al., 1998; Gopnik, Wellman,
Gelman, & Meltzoff, 2010; Saffran, 2003) capable of extracting a variety of
types of knowledge.

However, despite considerable evidence demonstrating the robustness of
statistical learning, there is little agreement regarding the nature of the cog-
nitive mechanisms that underlie statistical learning. One common conceptu-
alization of statistical learning mechanisms is as statistical computation (e.g.,
Aslin et al., 1998). What statistical computation entails is a matter of debate.
Some researchers posit that human cognition is endowed with the ability to
make powerful, complex statistical inferences unconsciously (e.g., Griffiths,
Chater, Kemp, Perfors, & Tenenbaum, 2010). However, it seems unlikely that
such implicit inferences are the same as those that a statistician would make
consciously. Therefore, although computational models operating under this
assumption have been able to simulate a variety of human behaviors, they
have been criticized for their lack of constraint and psychological plausibility
(e.g., Altmann, 2010; Perruchet & Peereman, 2004, p. 98). More psycholog-
ically plausible approaches suggest that unconscious statistical computations
can be thought of as tracking predictive dependencies or as learning proba-
bilistic cue-outcome relationships (i.e., contingency learning). Connectionist
networks provide one way of simulating these sorts of computations (e.g.,
Misyak, Christiansen, & Tomblin, 2010; Shanks, 1995; Williams, 2009).

However, this is not the only psychologically plausible conceptualization of
statistical learning. An alternative explanation is that sensitivity to frequencies
and probabilities in language are due not to a predictive statistical learning
mechanism, but rather to chunk formation. This notion is far from new. For
example, researchers in the implicit learning paradigm have long regarded
chunk formation as one way in which learners might develop sensitivities to
statistics (e.g., Knowlton & Squire, 1996; Perruchet & Pacteau, 1990; Reber &
Lewis, 1977; Redington & Chater, 1996; Servan-Schreiber & Anderson, 1990).
Although these approaches have focused primarily on how chunk formation
exploits surface frequency information, more recent models, like PARSER (Per-
ruchet & Vinter, 1998), have considered how chunking may result in sensitivity
to more than just frequency. For example, in their PARSER model, Perruchet
and Vinter (1998) argue that phenomenal awareness is the starting point of
learning (cf. Schmidt, 1990). The attended content of phenomenal awareness
forms a chunk. This chunk forms a memory trace and this is subsequently
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strengthened (i.e., through repeated exposure) or weakened (i.e., through decay
and interference). This process leads to the emergence of chunk knowledge
that is increasingly well matched to the statistical regularities in the language
(Perruchet & Peereman, 2004). This process is described in more detail later in
this article.

The aim of the present study was to investigate which of these statistical
learning mechanisms (statistical computation or chunk formation) better ac-
count for adult performance in a relatively new domain of statistical learning
research: incidental learning of second language (L2) syntax. As it stands, there
is currently no consensus regarding the mechanisms of statistical learning in
L2 development (or in other domains, for that matter). Some research has con-
sidered chunk formation to be central (e.g., Ellis, 1996, 2003; Robinson, 2005)
while other research has invoked statistical computation in the connectionist
sense (e.g., Ellis & Schmidt, 1997; Williams, 2010; Williams & Kuribara,
2008). However, to the best of my knowledge, no L2 study has focused on
assessing these different mechanisms by comparing the competing predictions
of different computational models of statistical learning with actual learning in
adults. To that end, the present study compared the predictions of two classes
of statistical learning mechanisms with adult learning of syntax in a semiarti-
ficial language. Following previous work on statistical learning and L2 syntax
by Williams (2010; Williams & Kuribara, 2008), the first class of mechanism
is one that computes predictive statistics (Simple Recurrent Network [SRN];
e.g., Elman, 1990; Williams, 2010). The second class of mechanism is one
that learns via chunk formation (PARSER; Perruchet & Vinter, 1998). Both
of these models have been used to account for various psycholinguistic phe-
nomena, but PARSER has not previously been used in L2 research. Instead,
PARSER has been used to account for child and adult acquisition patterns
in word segmentation (e.g., Giroux & Rey, 2009; Perruchet & Vinter, 1998)
and syllable processing (Perruchet & Peereman, 2004). On the other hand, the
SRN model has been one of the most widely used computational models of
statistical learning and has been remarkably successful in a variety of linguistic
domains, including syntax (e.g., Chang, Dell, & Bock, 2006; Christiansen &
Chater, 2001; Williams, 2010; Williams & Kuribara, 2008) and spoken-word
recognition (e.g., Gaskell & Marslen-Wilson, 2001).

Two Computational Models of Statistical Learning

In this section I briefly review the details of the SRN and PARSER. For
each, I discuss its architecture and mechanisms, followed by an illustration,
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and concluding with a brief discussion of previous findings using the
models.

SRN
Perhaps the most widely used computational model of statistical learning has
been the SRN, which was proposed by Elman (1990). As with all connectionist
networks, learning in the SRN takes place via the progressive tuning of connec-
tions between the layers of units in the network, and input representations are
mapped onto output representations through hidden units. However, the SRN
has an extra “copy” or “context” layer, which provides the network with a feed-
back loop of information. This feature gives the network a sort of short-term
memory for preceding material, allowing it to associate previous input with
current input. Together, these architectural qualities give the SRN the ability
to learn by predictive computation: its ability to learn by predicting the next
element in a sequence. In order to train the SRN, it is given a sequential input
one item at a time. At each time step, the SRN makes a prediction about what
comes next in a sequence. When the next item is input, the SRN compares
that input with its previous prediction. If its prediction is correct, then the SRN
adjusts its connection weights to increase the likelihood that it makes the same
correct prediction in the future. If its prediction is incorrect, however, then the
SRN adjusts its connection weights to increase the likelihood that it does not
make the same inaccurate prediction in the future. It is this feature that makes
the SRN sensitive to forward transitional probabilities, that is, the likelihood
that one item follows another in a sequence.

To illustrate, let us apply the SRN to a simplified, constructed example:
an unsegmented stream of letters composed of the bigrams AB, CD, EF, and
GH. Assume that the stream consists of the following sequence: ABCDE-
FGHCDGHEFABEFCDABGH. The transitional probabilities within bigrams
are all equal to one, for example, A is followed by B 100% of the time, C is
followed by D 100% of the time, and so on. However, the transitional probabil-
ities between bigrams are lower. For instance, D is followed by E 33% of the
time, G 33% of the time, and A 33% of the time. For the sake of illustration,
let us imagine that when the SRN is first exposed to the letter A, it predicts
that C comes next. However, upon inputting the second letter, B, the network
must correct for its inaccurate prediction. It does so by changing its connection
weights such that the next time it encounters A, it will be less likely to pre-
dict that C comes next. By repeating this process over a large enough corpus,
the SRN will learn to approximate the low transitional probabilities between
bigrams and the high transitional probabilities within bigrams. In the context
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of the present example, this means that, if the network has learned, when it is
presented with A it will correctly predict that B comes next. In essence, it will
have learned the AB bigram. This approach is often referred to as bracketing
because it assumes that humans insert boundaries between items that have a low
transitional probability, with sequences containing higher transitional probabil-
ities assumed to reflect whole units. In other words, chunked units are inferred
only after statistics have been computed.

How does such a statistical learning mechanism compare with human learn-
ing in our present area of interest, L2 syntax? Williams and Kuribara (2008)
and Williams (2010) addressed precisely this question in the context of adult
learning of L2 syntax using a semiartificial language paradigm. In Williams and
Kuribara’s (2008) study, participants read sentences in Japlish, a semiartificial
language consisting of English words placed into Japanese syntactic structures
and affixed with Japanese morphemes (e.g., John-ga pizza-o ate; John-NOM
pizza-ACC ate; John ate pizza). Participants read Japlish sentences under the
guise of a plausibility judgment task and were then given a surprise grammat-
icality judgment task (GJT). Williams and Kuribara then showed that an SRN
trained on the syntactic category sequences from Japlish was able to closely
match human behavior on the GJT, accounting for between 69% and 91% of
the adult learner data.

Extending this work further, Williams (2010) conducted an experiment
using nonsense syllable classes (e.g., si/se/sa/so and pi/pe/pa/po) as analogs
for Japlish syntactic categories (e.g., Horse-ni farmer-ga hay-o gave became
to-ni so-ga pa-o ku). Thus, any nonsense syllable beginning with ‘s’ corre-
sponded to the subject of the sentence and so on. Again, participants were
given a GJT to assess learning. Then, Williams again simulated human learn-
ing behavior by training a SRN, this time on the nonsense syllable class (i.e.,
syntactic category analog) sequences from the training phase of the second
incidental learning experiment. The results showed that the SRN was able
to account for approximately 96% of the variance in the human data in the
experiment with the meaningless nonsense syllables, but only 40% and 66%
of the data for participants trained on actual Japlish (instead of the analog).
The reduction in fit was, presumably, due to the influence of other linguistic
factors.

These results show that, in principle, the SRN can mimic human learning
of syntactic patterns if it is trained on syntactic category sequences. A plausi-
ble interpretation of this finding is that humans possess mechanisms that are
functionally comparable to the predictive mechanisms of the SRN, and such
proposals exist (e.g., Altmann & Mirkovič, 2009). However, it is important

251 Language Learning 64:2, June 2014, pp. 247–278



Hamrick Chunk Formation and L2 Syntax

to keep in mind that these studies comparing adult learning of L2 syntax and
SRN performance were not aimed at elucidating the mechanisms of statisti-
cal learning, but were, rather, aimed at demonstrating that statistical learning
mechanisms suffice to explain human learning in the behavioral experiments.
Consequently, there were no comparisons between multiple models of statis-
tical learning. This leaves open the possibility that other statistical learning
mechanisms may also be able to explain the human data. That is, functional
equivalence to the performance of the SRN may be obtained through a number
of different mechanisms. There is some evidence to this effect. Perruchet and
Peereman (2004) compared word-likeness ratings as a function of statistical
information in French rimes (VC). They then compared human ratings with
those predicted by the SRN and the chunk formation model PARSER. PARSER
significantly correlated with the SRN (r = .69) and better predicted human rat-
ings than the SRN. Thus, there is good reason to ask whether a different model
like PARSER could account for adult learning of L2 syntax in the semiartifi-
cial paradigm described above without recourse to the predictive computations
found in the SRN.

PARSER
Perruchet and Vinter (1998, 2002) presented PARSER as a new computational
model to account for the word segmentation phenomena in the seminal studies
conducted by Saffran and colleagues (e.g., Aslin et al., 1998; Saffran et al.,
1996). PARSER’s attractiveness is in its parsimony. It has been used to simulate
findings in the statistical learning literature on word segmentation without the
addition of specific mechanisms that perform statistical computations (e.g.,
Giroux & Rey, 2009; Perruchet & Tillman, 2010; Perruchet & Vinter, 1998).
Instead, PARSER learns by a process of chunk formation that is grounded in
well-established principles of associative learning and memory. First, chunks
are formed initially on a random basis by the limited capacity of attention.1 The
content of PARSER’s attentional focus forms a chunk that enters into its memory
system (known as the percept shaper). The size of the chunk depends on the
varying size of the attentional focus, which can be manipulated by the researcher
for a priori theoretical reasons. Chunks are then gradually strengthened or
weakened with further experience through general principles of associative
memory decay and interference. Like the attentional focus parameter, the rate
of memory decay and interference can be manipulated by the researcher for a
priori theoretical reasons.

If the SRN represents a bracketing approach, then PARSER represents
a clustering approach (Giroux & Rey, 2009). Processing primitives that
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occur within the window of attention are repeatedly clustered together forming
increasingly complex chunks. To illustrate, let us also apply PARSER to the
unsegmented stream of letters from the sequence above, again composed of the
bigrams AB, CD, EF, and GH (see Figure 1 for an illustration). Initially, be-
cause PARSER does not know the structure of the input, it will extract random
chunks from a series of attentional processing episodes. Chances are that some
of these chunks will be legal bigrams, while others will not be. Consider a very
simplified example. With no cues to segmentation, PARSER might extract the
units AB, CDE, and FGH from the first part of the above artificial grammar
string ABCDEFGH. In this case, PARSER has created units in memory for
one correct bigram (AB) and two illegal trigrams (CDE and FGH). These units
in memory now guide the processing of the next section of the above string:
CDGHEFAB. Assume for the sake of simplicity that PARSER experiences this
string as three more discrete chunks: CDG, HEF, and AB. In the processing
of this second string, neither of the original illegal trigrams CDE or FGH has
been repeated in the input, so their memory traces decay. Moreover, the fact
that these trigrams overlap with the recently processed trigrams CDE and FGH
means that the original illegal trigrams in memory are further forgotten due
to interference. Finally, the legal bigram AB that was chunked in the first pass
again matches the bigram AB in the second pass, leading to the strengthening
of the AB bigram in PARSER’s memory. As this process repeats on a large
corpus, PARSER is able to converge on the correct units of the input, which,
as noted above, have statistical structure.

Unlike the SRN, PARSER has not been used in second language acquisition
(SLA) research. Rather, PARSER was designed to account for word segmen-
tation phenomena in child language acquisition research on statistical learning
(e.g., Saffran et al., 1996). It follows, then, that applying PARSER to syntax
acquisition assumes a functional parallel between the mechanisms responsible
for word segmentation and the mechanisms of syntactic development. For word
segmentation, PARSER segments language into disjunctive parts composed of
primitives (e.g., syllables or phonemes). Attentional processes and associative
learning principles lead to the gradual emergence of clusters of primitives in
memory (i.e., words and morphemes). In the present application to syntax,
adults are assumed to have abstract knowledge of syntactic categories (or some
comparable structures) as syntactic primitives, and PARSER operates on these
abstract primitives. This is both a theoretical assumption and a methodological
detail that maintains comparability between the present study with the work
on L2 syntax using the SRN in Williams and Kuribara (2008) and Williams
(2010). PARSER segments the input into disjunctive chunks of syntactic
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Input Percept Shaper
[AB]CDEFGHCDGHEFABEFCDABGH AB 1.00

↓
Input Percept Shaper
AB[CDE]FGHCDGHEFABEFCDABGH CDE

AB
1.00
0.95

↓
Input Percept Shaper
ABCDE[FGH]CDGHEFABEFCDABGH FGH

CDE
AB

1.00
0.95
0.90

↓
Input Percept Shaper
ABCDEFGH[CDG]HEFABEFCDABGH CDG

FGH
CDE
AB

1.00
0.95
0.90
0.85

↓
Input Percept Shaper
ABCDEFGHCDG[HEF]ABEFCDABGH HEF

CDG
FGH
CDE
AB

1.00
0.95
0.90
0.85
0.80

↓
Input Percept Shaper
ABCDEFGHCDGHEF[AB]EFCDABGH AB

HEF
CDG
FGH
CDE

1.80
0.95
0.90
0.85
0.80

Figure 1 Schematic illustration of chunk formation in PARSER. Given the perceptual
primitives A, B, C, D, E, F, and G, PARSER randomly forms chunks based on attentional
windows of 2–3 letters in size. The chunks are strengthened or decayed with more input.
The example uses PARSER’s default attention window and memory decay settings.
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primitives (e.g., NP-VP or PP-VP). The end result is an inventory of increasingly
complex syntactic chunks. It is worth noting here that, although PARSER was
not originally intended to account for syntactic development phenomena, there
is no reason in principle it cannot apply to more abstract knowledge structures
such as syntactic categories (Perruchet, 2005). Moreover, the iterative forma-
tion of increasingly large and complex syntactic chunks at least tacitly aligns
the present use of PARSER with theoretical frameworks that treat syntactic de-
velopment as at least in part the product of learning abstract syntactic chunks,
including construction grammar (e.g., Goldberg, 2006; Tomasello, 2003), sim-
pler syntax (e.g., Culicover & Jackendoff, 2006), the memory-unification
framework (Hagoort, 2005), and head-driven phrase structure grammar
(Pollard & Sag, 1994).

How do the SRN and PARSER compare in their ability to account for hu-
man learning phenomena? The answer is not clear. The SRN has been much
more widely used than PARSER in simulating human learning and has been
very successful in accounting for a variety of linguistic phenomena. On the
other hand, PARSER has been shown to better and more parsimoniously ac-
count for some human linguistic data (e.g., Giroux & Rey, 2009; Perruchet
& Peereman, 2004). For example, Giroux and Rey (2009) trained a SRN and
PARSER on a word segmentation task (like that of the studies in Saffran et al.,
1996) and compared the competing predictions of these models with human
performance on the same task. When trained on the word segmentation task,
the SRN predicts that, over time, word segmentation should lead to increased
unit status for both lexical and sublexical units. On the same task, PARSER
predicts that only words would be strengthened over time, with sublexical units
being increasingly less weighted in memory than lexical units. The human data
fell within the predictions of PARSER. With increased training, full words were
learned better than sublexical units (i.e., part-words), consistent with PARSER.
This finding is broadly consistent with other studies showing that other chunk-
based models outperform other statistical sequence learning models in other
domains, such as visual pattern learning (e.g., Orbán, Fiser, Aslin, & Lengyel,
2008) and artificial grammar learning (e.g., Boucher & Dienes, 2003). Im-
portantly, this suggests that advantages for chunk-based models over sequence
learning models are not limited to the idiosyncrasies of a single model (i.e.,
PARSER) in a single domain (i.e., speech segmentation), but instead may be
more general property of chunk formation itself as a mechanism of human
learning.
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The Present Study

The study reported in this article extends these previous investigations compar-
ing the performance of different computational models of statistical learning,
focusing specifically on the SRN and PARSER. In the first stage, a semiartificial
language paradigm similar to that of Williams (2010; Williams & Kuribara,
2008) was used to gather human data on incidental learning of L2 syntax. In the
second stage, a simulation paradigm was used to compare the behavioral data
with the pattern of performance in the SRN and PARSER in order to see which
computational model, if any, was better able to capture the human pattern of
performance.

The study contained three innovations in the semiartificial language learn-
ing paradigm. First, it used a trained control group in order to avoid problematic
assumptions involved in comparing experimental groups with untrained con-
trols or chance baselines (e.g., Hamrick, 2012, 2013; Rebuschat, Hamrick,
Sachs, Riestenberg, & Ziegler, 2013; Perruchet & Reber, 2003; see Dienes &
Altmann, 2003, for a counterargument). The second methodological innovation
concerned the development of the semiartificial language stimuli. In previous
studies using semiartificial languages, the statistical structure of the stimuli was
not controlled. So, even if statistical learning took place, it was unclear what
types of statistics were informative for learners. Therefore, the present study
employed a semiartificial language whose syntactic structure was constructed
to have only two transitional probabilities between syntactic categories (67%
and 33%). The third innovation was that results of the human experiment were
compared with two computational models of statistical learning, rather than
one: the SRN, which learns via predictive computation, and PARSER, which
learns via chunk formation.

Stage 1: Behavioral Evidence

In order to address the above goals, first a semiartificial language learning
experiment was conducted on human adults.2 The sections below report on the
method and findings obtained in this first stage of the study.

Method
Participants
Thirty volunteer undergraduate native speakers of English (21 women, 9 men,
Mage = 18.76, range: 18–20) were randomly assigned to either experimental
(n = 15) or control (n = 15) conditions. Data from four participants were
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discarded because they either failed to repeat all of the training sentences
aloud (n = 3) or had prior knowledge of a language (Persian) whose syntax
matches the structures used in the semiartificial language (n = 1), leaving
13 participants in each group. Experimental and control groups did not differ
significantly across age, sex, handedness, or number of languages (all ps >

.05). All participants reported having normal or corrected-to-normal vision.

Stimuli
This section describes the three sets of materials developed and used for the
elicitation of the behavioral evidence. There were two sets of exposure phase
stimuli: an experimental set and a trained control set. The training instructions
and training stimuli can be found in Appendix S1 of the online Supporting
Information. Finally, there was a set of test-phase stimuli that all participants
read during the GJT. The testing instructions and testing stimuli can be found
in Appendix S2 of the online Supporting Information.

Experimental Stimuli. The experimental group was exposed to a semiar-
tificial language consisting of English words and syntactic structures3 based
on Persian. Three syntactic structures were used to generate 96 sentences (32
sentences per structure). To create the stimuli, simple transitive English sen-
tences were rearranged according to the three syntactic structures while still
obeying within-phrase structure rules of English,4 as in structures A, B, and C
in Table 1.

Stimuli were balanced as carefully as possible within the confines of natural
language. There were 5 repeating TEMPORAL PHRASEs, 20 repeating SUB-
JECT proper nouns (all names), nonrepeating PREPOSITIONAL PHRASEs,
nonrepeating OBJECT nouns, and 48 repeated VERB phrases. Sentences were
presented in random order in the training phase.

The experimental sentences contained syntactic phrase sequences that were
probabilistically constrained. The transitional probabilities between syntactic
phrases were either .67 or .33, depending on the transition (see Table 2).
Thus, each syntactic phrase had a distributionally preferred, but not mandatory,
successor in each sentence (e.g., TEMPORAL PHRASE could be followed
by SUBJECT or VERB PHRASE, but was more likely to be followed by
the former). Transitional probabilities were averaged over each experimental
structure to calculate a mean transitional probability for each sentence type as a
whole. These were as follows: Structure A = .58, Structure B = .42, Structure
C = .50.5
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Table 1 Structures used in the exposure phase of the experimental group and sentences
exemplifying each

Structure Syntactic Category Sequence Sample Sentence

A (TSPOV) TEMPORAL PHRASE – SUBJECT –
PREPOSITIONAL PHRASE –
OBJECT – VERB PHRASE

Yesterday Charlie at the
supermarket milk bought.

B (TSOPV) TEMPORAL PHRASE – SUBJECT –
OBJECT – PREPOSITIONAL
PHRASE –VERB PHRASE

Yesterday Charlie milk at
the supermarket bought.

C (TVSPO) TEMPORAL PHRASE – VERB
PHRASE – SUBJECT –
PREPOSITIONAL PHRASE –
OBJECT

Yesterday bought Charlie at
the supermarket milk.

D (TSPVO) TEMPORAL PHRASE – SUBJECT –
PREPOSITIONAL PHRASE –VERB
PHRASE – OBJECT

Not long ago Vickie in the
fridge kept a pear.

E (TSVPO) TEMPORAL PHRASE – SUBJECT –
VERB PHRASE – PREPOSITIONAL
PHRASE – OBJECT

Not long ago Vickie kept in
the fridge a pear.

F (TVSOP) TEMPORAL PHRASE – VERB
PHRASE – SUBJECT – OBJECT –
PREPOSITIONAL PHRASE

Not long ago kept Vickie a
pear in the fridge.

Note. Structures A, B, and C were grammatical items, while D, E, and F were ungram-
matical items. The use of the same lexical items for each is only for illustration. Please
see the Supporting Information online for all training stimuli.

Table 2 Transitional probabilities between syntactic categories in the experimental
exposure stimuli

Transition TP

TEMPORAL PHRASE – SUBJECT 0.67
TEMPORAL PHRASE – VERB PHRASE 0.33
SUBJECT – PREPOSITIONAL PHRASE 0.67
SUBJECT – OBJECT 0.33
PREPOSITIONAL PHRASE – OBJECT 0.67
PREPOSITIONAL PHRASE – VERB PHRASE 0.33
OBJECT – VERB PHRASE 0.33
OBJECT – PREPOSITIONAL PHRASE 0.33
VERB PHRASE – SUBJECT 0.33
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Trained Control Stimuli. Part of the novelty of the present study is the
fact that the control group also participated in a training condition (for the
importance of using trained control groups, see Perruchet & Reber, 2003).
The control group was trained and tested on the same stimulus sentences as far
as the lexical items and the compositional semantics contained in them were
concerned. However, the exposure phase sentences in the control group did not
follow the three syntactic structures, but were randomized in such a way that no
whole sentence structure was ever repeated (e.g., TSPOV only occurred once
and temporal phrases only were sentence-initial for 1/5 of the stimuli). That is,
each of the 96 sentences was presented in a different syntactic phrase order with
transitional probabilities between syntactic phrases matched for all sequences.
This manipulation meant that the transitional probability between any two
syntactic phrases over the course of the training phase was approximately 0.25.
Thus, there were no probabilistic cues to word order in the control stimuli.
This provided a learning baseline that ideally isolated unforeseen task effects
or mere exposure effects from the exposure phase, thus allowing them to be
partialed out.

Test Materials. The 36 novel test-phase sentences consisted of the three
target grammatical structures (A, B, and C from Table 1) and three ungrammat-
ical structures (D, E, and F, from Table 1). Mostly new lexical items were used
in the test phase, although some lexical items were retained from the exposure
phase for readability purposes, for example, determiners, prepositions. All test
sentences were constructed with two temporal phrases, six subject proper nouns
(names), six prepositional phrases, six object nouns, and six verbs. Thus, the
same core set of lexical items was rotated around the test stimuli. This was
done to limit overacceptance or rejection of any one structure at test due to its
lexical content, because each structure was drawn from the same set of lexical
items. As with the exposure phase, test items were presented in random order
across participants.

Procedure
Each group first participated in an exposure phase (which differed only in terms
of their stimuli) and completed identical test phases.

Experimental Exposure Phase. The exposure phase was set up as a plau-
sibility judgment task within a noncumulative self-paced reading design. Im-
plausible sentences were defined for participants as those unlikely to happen
in the real world (e.g., Yesterday John at the store milk bought is plausible, but
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Yesterday John at the store milk sang is not). Sentences in the exposure phase
were divided into four blocks of 24 sentences each. Of those 24 sentences, each
structure occurred eight times, half in semantically plausible sentences and
half in semantically implausible sentences. The plausibility of each sentence
was determined by its final word to ensure that participants would read the
entire sentence. The order of all the sentences and the four training blocks was
randomized across participants.

Trained Control Exposure Phase. As with the experimental group, the
control group was exposed to sentences in four randomized blocks. Likewise,
half of each block consisted of semantically plausible sentences, while the other
half was implausible. As stated previously, the crucial difference was that no
sentence structure ever repeated in the control phase. Thus, the control group
simply received four randomized blocks of randomly ordered, nonrepeating
sentence structures.

General Procedure. Participants were tested individually in a quiet labo-
ratory. They were told that they were participating in a study about meaning
comprehension under time pressure (see the Supporting Information online
for the full instructions). Participants were instructed to read through sentence
fragments one at a time by pressing the space bar to reveal each new fragment,
repeat the sentence aloud (to ensure they were paying attention), and then indi-
cate whether the sentence depicted a scenario that was likely in the real world
(i.e., make a plausibility judgment).

The experiment was administered on a PC with a 15.6” screen using Su-
perLab Pro 4.5. All text was black on a white background with size 18 Tahoma
font. Sentences were presented in a noncumulative moving-window self-paced
reading design, which required participants to press the space bar to present
each fragment of a sentence. The boundaries between fragments corresponded
exactly with the syntactic phrase boundaries that had been probabilistically
manipulated (i.e., temporal phrase, subject, object, prepositional phrase, and
verb). In other words, participants saw the constituents of a single complete
syntactic phrase each time they pressed the space bar. This manipulation was
intended to prevent learners from having to perform extra computations to
segment the sentence.

In each exposure-phase trial, participants saw a fixation cross and then
pressed the space bar to begin reading sentence fragments. They continued
pressing the space bar to see each fragment until they reached the end of the
sentence. They were then prompted to repeat the sentence verbatim. After
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doing so, they pressed the space bar again and were prompted for a plausibility
judgment. After giving a plausibility judgment, participants saw another fixa-
tion cross and the next trial would begin. The average time taken to complete
the exposure phase was 20 minutes.

After the exposure phase, participants were then told that the word order in
the previous sentences was not random but instead had contained systematic
patterns. They were instructed to read 36 new sentences, all of which would be
plausible. They were told that half the new sentences would follow the same
word order patterns as the previous sentences and that these should be called
“grammatical.” They were told that the other half of the new sentences would
not conform to the same word order and should be rejected as “ungrammatical.”
To decrease the likelihood that they would classify sentences on the basis of
their meanings, participants were reminded that all test sentences were plausible
and the focus now was on word order. On average, the test phase took 5 minutes
to complete.

Results for the Behavioral Experiment
Overall classification accuracy and endorsement rates on the grammatical and
ungrammatical items on the GJT were taken as measures of learning for this
study. Alpha levels were set to 0.05.

Overall Performance on Grammatical and Ungrammatical Items
The analysis of the grammaticality judgments (Figure 2) showed that the ex-
perimental group classified 61.89% (SD = 16.51) of the test items correctly
and the control group 59.93% (SD = 12.51). The difference between the two
groups was not significant, t(24) = .35, p = .72, indicating no overall evidence
of learning. However, overall accuracy may mask differences in performance
on individual structures. To further investigate this, accuracy on individual
sentence structures was analyzed.

Performance on Individual Structures
In order to establish whether the experimental and control groups performed
differently across the individual syntactic structures in the test phase, a 2 × 6
mixed analysis of variance (ANOVA) was conducted on participants’ accuracy
on the GJT with Group (2 levels: Experimental, Control) as the between-
subjects factor and Structure (6 levels: A, B, C, D, E, F) as the within-subjects
factor (see Figure 3). The ANOVA (with Greenhouse-Geisser correction) re-
vealed a significant Group * Structure interaction, F(3.06, 79.75) = 2.71,
p = .05, ηp

2 = .17; no effect of Structure, F(3.06, 79.75) = 2.05, p = .11;
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Figure 2 Mean accuracy on grammatical and ungrammatical items on the grammatical-
ity judgment task in the Experimental and Control groups. Error bars represent standard
error.

and no effect of Group, F(1, 24) = .11, p = .74. To further investigate the
locus of the interaction effect, post hoc comparisons between groups were
conducted. The post hocs revealed that Experimental participants significantly
outperformed Controls on structure A, t(24) = 2.44, p = .02, d = .92, and B,
t(24) = 2.18, p = .03, d = .30, but underperformed Controls on structure C
and that difference approached significance, t(24) = 2.03, p = .054, d = .80.
There were no between-group differences on structures D, E, or F (all ps >

.34). The Experimental group outperformed the Control group on structures A
and B, but underperformed Controls on structure C.

To further investigate the pattern of performance across the different syn-
tactic structures in the GJT, Bonferroni-adjusted post hoc pairwise comparisons
were conducted. The performance of the Experimental group across the differ-
ent structures is reported in Table 3. Experimental participants differed in their
overall endorsement of structure pairs A(TSPOV) and C (TVSPO), p = .04, A
and E (TSVPO), p = .01, and A and F (TVSOP), p = .03. No other pairwise
comparisons were significant in either group.

Overall, the results suggest some evidence of a small amount of learning in
the Experimental group; however, learning was only found in structures A and
B. Therefore, there is some weak evidence for statistical learning of L2 syntax
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Figure 3 Mean accuracy across the difference syntactic structures on the grammaticality
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Table 3 Stimuli coding scheme for the SRN and Parser

Structure Coding

A
Syntactic structure TEMP PHRASE – SUBJ – PREP PHRASE – OBJ – VERB PHRASE
Coding ∗ T S P O V #

B
Syntactic structure TEMP PHRASE – SUBJ – OBJ – PREP PHRASE –VERB PHRASE
Coding ∗ T S O P V #

C
Syntactic structure TEMP PHRASE – VERB PHRASE – SUBJ – PREP PHRASE – OBJ
Coding ∗ T V S P O #

under incidental learning conditions. However, the extent to which this learning
was the result of learning mechanisms that performed statistical computations
must be addressed before any conclusions can be made with regard to the actual
mechanisms of learning found in this experiment.
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Stage 2: Comparison With Evidence From Computational

Simulations

The aim of the second stage of the study, which involved computational
simulations, was to investigate whether the pattern of performance for the
Experimental group across the structures in the GJT is better replicated by a
SRN or PARSER. If the adults in the behavioral experiment were computing
predictive statistics over the syntactic categories in the semiartificial language
then it would be plausible to expect the SRN to be able to replicate human per-
formance across the different structures. However, if participants were engaging
in chunk formation processes by iteratively clustering syntactic categories into
larger syntactic category chunks (e.g., SPO, TSP, OV), then it would be plausible
to expect PARSER to be better at capturing the human pattern of performance
across the different test structures.

Method
Stimuli
Both the SRN and PARSER were trained on the same sentence structure tem-
plates as the human participants in the Experimental group. In other words, the
SRN and PARSER were trained on grammatical syntactic phrase sequences.
Both models were exposed to each syntactic structure 32 times in a random
order, just like the Experimental group. The input coding for each sentence
is shown in Table 3. In the coding scheme, letters represent syntactic phrase
categories. An asterisk [*] represents the beginning of a sentence and a pound
sign [#] represents the end of a sentence.6 The lexical items of sentences were
not input to either model. Instead, the coding system assumed that syntactic
phrases (or their functional equivalents) are processing primitives. This was
done for two reasons. First, it provided a measure of methodological compara-
bility with previous computational studies on L2 syntax (e.g., Williams, 2010,
Experiment 2). Second, as has been pointed out elsewhere (e.g., Chang et al.,
2006; Williams & Kuribara, 2008), it is fairly safe to assume that adult L2
learners have recourse to some knowledge of abstract linguistic categories and
apply this knowledge to their L2s.

Parameters
Following Boucher and Dienes (2003), both the SRN and PARSER were trained
across a variety of parameters. This increased the likelihood that either model’s
fit to the human data would be due to intrinsic properties of the model rather
than to idiosyncratic, specific parameters that just happened to match human
behavior.
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SRN. Simulated participants (matched for the number of human partici-
pants, N = 13) were exposed to the 96 training sentences presented in random
order (i.e., 32 exposures to each syntactic structure). To test the SRN after
learning, the activation of the target output node (the correct next syntactic
phrase in a sequence) was recorded as a proportion of the activation of all out-
put nodes. This is known as the Luce ratio, and it serves to measure the SRN’s
accuracy at predicting the next item in a sequence (for an explanation of the
Luce ratio scoring procedure, see Williams & Kuribara, 2008). These values
were then averaged over each test sentence to provide an index of learning in
the network.

At the beginning of each simulation, the SRN contained seven localist input
and output nodes (i.e., one node per syntactic phrase category plus the beginning
and ending nodes) and randomly selected connection weights between the
nodes. Each simulated SRN participant consisted of a single set of parameters
randomly chosen from a range of values, as shown in Table 4. To ensure that
a given SRN participant’s performance was not due to the initial state of the
network (i.e., the initial connection weights), the performance of each simulated
SRN participant was calculated as the average of five individual simulations
(“runs”) using that SRN participant’s chosen parameters. For each run, the
SRN participant was reset to an initial state with connection weights selected
randomly between [−.5 .5]. After five complete runs, the results for that set of
parameters (i.e., that SRN participant) were averaged into a score for that SRN
participant. In other words, performance of each simulated participant was
actually the average performance of a single set of SRN parameters (number of
hidden and context units) over five independent simulations, each with random
initial connection weights. This process was completed for each of the 13
simulated participants.

PARSER. As with the SRN, the simulated PARSER participants (N = 13)
were each given a random set of parameters within the ranges listed in Table 4.
Also as with the SRN, the score for each simulated PARSER participant was
the average of that participant over five runs. In other words, each PARSER
participant was simulated five times with the same parameters but different
initial settings. To measure learning, the weights of whole syntactic structures
(e.g., the unit *TSPOV# in PARSER’s memory) were taken as scores. However,
PARSER did not always learn an entire syntactic structure. When PARSER
did not learn whole syntactic structures, chunks that did exist in PARSER’s
memory that had appeared in the grammatical syntactic structures had their
weights summed and then averaged across runs to form a single participant’s
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Table 5 Mean Luce ratios (SRN) and chunk weights (PARSER)

Grammatical Ungrammatical Overall

A B C D E F GR UNGR

SRN
M 0.528 0.502 0.512 0.421 0.404 0.381 0.514 0.402
SD 0.124 0.103 0.115 0.068 0.054 0.065 0.114 0.061
SE 0.034 0.028 0.032 0.018 0.014 0.018 0.032 0.017

PARSER
M 26.23 23.58 17.18 14.71 16.27 7.96 22.33 12.98
SD 12.42 10.98 7.93 11.84 11.25 7.14 10.01 9.82
SE 3.44 3.04 2.20 3.28 3.12 1.98 2.77 2.72

average performance.The coding scheme is illustrated in Appendix S3 of the
online Supporting Information. This scoring procedure simply reflects the fact
that participants need not have learned entire syntactic structures to endorse
sentences, but could have performed exclusively on the basis of fragmentary
chunk knowledge.

Results for the Computational Simulations
The results of the simulations are reported in Table 5. Simulation data from
the SRN and PARSER were analyzed in order to determine the extent to which
either model was able to learn the three target syntactic structures.

For the SRN, a repeated-measures ANOVA (with Greenhouse-Geisser cor-
rection) on Luce ratio scores with Structure (A, B, C, D, E, F) as within-
subjects factor revealed a significant effect of Structure, F(1.24, 14.89) = 47.70,
p < .001, ηp

2 = .79. Moreover, the SRN showed significantly higher Luce val-
ues for grammatical items than ungrammatical items, t(12) = 7.43, p < .001,
d = 1.22. The results indicate that the SRN learned to discriminate grammatical
from ungrammatical structures.

In PARSER, 9 out of 13 simulated participants were actually able to
learn A, B, and C as whole templates. The other 4 were only partially able
to do so, and required the chunk weight scoring procedure outlined above.
Chunk weights were mandatorily used to compute scores for ungrammat-
ical structures in PARSER, because PARSER could not have an ungram-
matical whole structure in its memory. A repeated-measures ANOVA (with
Greenhouse-Geisser correction) on chunk weights in PARSER with Structure
(A, B, C, D, E, F) as within-subjects factor revealed a main effect of Structure,
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Table 6 Statistical significance of Bonferroni-adjusted pairwise comparisons for human
participants, the SRN, and PARSER

HUMAN SRN PARSER
Structure Structure Significance Significance Significance

A B 1.000 0.032 1.000†

C 0.044 0.002† 0.002†

D 0.298 0.000 0.000
E 0.011 0.001† 0.000†

F 0.034 0.000† 0.000†

B C 0.159 0.643† 0.102†

D 1.000 0.000 0.000
E 0.272 0.001 0.002
F 0.082 0.000 0.000

C D 1.000 0.000 1.000†

E 1.000 0.001 1.000†

F 1.000 0.000 0.000
D E 1.000 0.062 0.618†

F 1.000 0.001 0.067†

E F 1.000 0.411† 0.005

Note. The icon † indicates a point where the significance of human pairwise comparisons
matches that of the computational model.

F(2.43, 29.23) = 40.42, p < .001, ηp
2 = .77. Moreover, chunk weight val-

ues were significantly larger for grammatical items than ungrammatical items,
t(12) = 25.54, p < .001, d = 0.94. Taken together, these results demonstrate that
both the SRN and PARSER were actually better at discriminating grammatical
and ungrammatical items than human adults.

To investigate whether either model could better simulate the human pattern
of performance in endorsement across the different items in the GJT, further
analyses were conducted on the significant effect of Structure in both models.
Bonferroni-adjusted pairwise comparisons were conducted on performance
differences between grammatical and ungrammatical structures in the SRN
and PARSER (Table 6). Recall that in the Expeirmental group, Bonferroni-
adjusted pairwise comparisons showed significant differences in performance
on structure pairs A-C, A-E, and A-F, while the rest of the comparisons were
nonsignificant. Pairwise comparisons on the simulated performance of the SRN
and PARSER showed that both models were able to simulate the significant
differences in performance for structure pairs A-C, A-E, and A-F. However,
PARSER was able to replicate more of the human performance patterns across
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the different syntactic structures than the SRN, accounting for 9/15 of the
pairwise comparisons in the Experimental group, while the SRN only accounted
for 5/15 of the comparisons. However, Fisher’s exact test7 shows this difference
to be nonsignificant, p = .27; therefore, it should be treated with caution.

General Discussion and Conclusion

This study aimed to provide insights into the mechanisms of statistical learning
in the context of adult learning of L2 syntax. In particular, it compared the ability
of two computational models, a SRN and PARSER, to simulate adult learning
of syntax in a semiartificial language paradigm under incidental conditions.
The first research goal was to assess whether there would be any evidence of
incidental statistical learning based on adult performance on a GJT. There was
evidence of a modest learning effect in the Experimental group’s performance
on the GJT, but only on structures A (TSPOV) and B (TSOPV). However,
contrary to expectations, the Experimental group underperformed the Control
group on structure C, and the two groups were not significantly different in
accuracy on ungrammatical items.

The second research goal investigated whether the human data could better
be replicated by a learning mechanism that computes predictive statistics (SRN)
or a learning mechanism that forms increasingly complex chunks (PARSER).
PARSER was better able to replicate the pattern of human performance across
the different structures in the GJT. This finding is consistent with the possibility
that chunk formation processes may have been involved in the learning effects in
the behavioral experiment. Importantly, the finding of an advantage for chunk-
based models over connectionist models is consistent with previous research in
other domains, such as word segmentation (e.g., Giroux & Rey, 2009; Perruchet
& Peereman, 2004; Perruchet & Vinter, 1998) and artificial grammar learning
(e.g., Boucher & Dienes, 2003). However, both the SRN and PARSER were
actually better able to classify test structures than human participants, and
neither model was able to fully reproduce the full range of human results.
This was likely due to a combination of factors, including training the models
exclusively on syntactic patterns, the exclusion of semantics, and a lack of prior
knowledge of L1 in the models. Therefore, the goodness of fit of PARSER
was relative to the SRN. Needless to say, other computational models, or
modifications to the current models, will be necessary to fully account for
the human data. Future work should also consider whether the models’ robust
abilities to simulate statistical learning in other domains of language and their
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less robust performance in the current study imply that statistical learning is
less of a driving force in learning L2 syntax.

The present findings appear to contrast with previous research showing that
the SRN could simulate human performance in incidental learning of semiarti-
ficial syntax (Williams, 2010; Williams & Kuribara, 2008). Why did the present
study not reproduce this finding? This question necessitates further investiga-
tion, as there are a number of plausible explanations. For one, it could simply
be that the SRN and PARSER simulate two different learning mechanisms that
are available to humans and which may be more or less likely to operate on
different types of stimuli. If this were the case, we would expect the SRN and
PARSER to be able to capture human data to different extents depending on
which mechanism was involved. What might cause a change in mechanism?
There are many possible causes, but the tasks and procedure for the Japlish
studies were very similar to those used at present. Indeed, one might suspect
the semiartificial language stimuli themselves to be the chief difference. Per-
haps the SRN better replicated human performance in previous work because
of the more complex nature of Japlish. On this view, the relative simplicity and
stability of the semiartificial language stimuli in the present study may have
favored chunking mechanisms like those in PARSER. However, Williams and
Kuribara (2008) reported a discrepancy between the SRN and human partic-
ipants on complex long-distance scrambling Japlish structures. This suggests
that stimulus complexity may not be the cause of the discrepancy. In the absence
of a compelling explanation of the differences in results between the present
and previous studies, it is important to keep in mind that Williams (2010) found
that the SRN was best able to fit the human data when humans were trained
on meaningless syntactic category analogues (96% shared variance). When the
SRN was compared with performance on the actual semiartificial language
learning (as was done here), the shared variance dropped to 40% and 66%.
Thus, the lower degree of fit between the SRN and human behavior found here
may not be so different from the results Williams obtained.

Taken together, the results from the current study suggest that chunk for-
mation may play a role in early L2 syntactic development under incidental
learning conditions. These results are consistent with previous research show-
ing superior performance for PARSER (e.g., Giroux & Rey, 2009; Perruchet
& Peereman, 2004) and other chunk-based models (e.g., Boucher & Dienes,
2003) over the SRN. Inasmuch as PARSER simulated human performance due
to genuine similarities in their learning mechanisms, the present results also
suggest the importance of attentional and associative learning mechanisms in
the early phases of language acquisition. On this view, the attentional and
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associative mechanisms argued to play important roles in word segmentation
(e.g., Perruchet & Vinter, 1998, 2002; Perruchet & Tillman, 2010) would also
be contributing to the formation of chunks of syntactic knowledge. As such,
the present results implicate general principles of attention-based associative
learning and memory in early L2 syntactic development. This finding is consis-
tent with usage-based, emergentist approaches to SLA (e.g., Ellis, 1996, 2006,
2008) and with Robinson’s (1996, 1997) Fundamental Similarity Hypothesis,
both of which posit the importance of attention and chunk formation in L2
development. Moreover, because PARSER simulates attentional and associa-
tive mechanisms that are implicated in various aspects of declarative memory,
it is plausible to consider that the relationship between PARSER and human
performance may indicate that human participants were utilizing comparable
declarative memory mechanisms. If this is the case, then the present results are
consistent with approaches to L2 syntax that posit a role for declarative mem-
ory in early syntactic development (e.g., the Declarative/Procedural Model,
Ullman, 2004). Indeed, in a replication that extended this experiment, Hamrick
(in press) found that declarative memory for syntactic information likely played
a significant role in the learning process.

However, it is important to keep in mind a number of limitations that
prevent strong generalizations from the present study. First, the use of the
semiartificial language paradigm, while methodologically convenient, brings
several limitations. Potentially the most damaging problem is that the use
of English words and phrase structure recruits syntactic information that is
English specific and which may cause unnatural processing or alignment prob-
lems when placed into non-English syntactic structures that would not occur
in natural languages. A more concerning possibility is that the word order
patterns did not match the head directionality preferences associated with
English phrase structure, which was preserved in the stimuli (e.g., Green-
berg, 1963, but see Dunn, Greenhill, Levinson, & Gray, 2011, for compelling
counterevidence). Future ab initio learning research using natural languages is
needed to assess the robustness of conclusions from the semiartificial language
paradigm.

Second, the study is limited by only demonstrating a learning effect for two
of the three structures in the exposure phase. Experimental participants learned
structures A (TSPOV) and B (TSOPV), but performed below Controls on
structure C (TVSPO). What caused this pattern of performance? Considering
the aforementioned word order universals, it is possible that VSO word order
created an incongruity with English phrase structure leading to poor perfor-
mance on structure C. Moreover, this VSO word order may also have prompted
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Controls to endorse it for being “unusual,” like the randomized sentence struc-
tures they were exposed to during training. Alternatively, participants may have
simply been using metalinguistic strategies that disfavored structure C. For
example, in an experiment using the same semiartificial language, Hamrick
(2013) demonstrated that participants were biased toward using a verb-final
strategy to classify test stimuli (e.g., they recalled that verbs came at the end
and then applied that simple rule in the test phase). However, when the GJT
was replaced with a recognition memory task, it was found that participants
performed equally well on structures A, B, and C, because the design of the
recognition memory test minimized the need for metalinguistic strategies. Fur-
ther research is needed to assess these and other possible explanations.

A third limitation exists in PARSER’s attentional window mechanism,
whose size changes randomly within the parameter range. In all likelihood
this is not how human attention works, especially in adult L2 learners. L2
learners have vast prior knowledge that would, presumably, shape the size and
scope of attention to the linguistic input. Moreover, L2 learners with different
native languages probably have different language-specific attentional biases
that they bring to the learning task (e.g., Ellis & Sagarra, 2010). This problem
with PARSER speaks to a larger problem with both the computational models:
namely, that neither model is generally trained on a first language before being
given a second language as input. Consequently, future research is needed com-
paring the ability of these—and other—computational models to learn over a
large L1 corpus before proceeding to L2 input.

This study is also limited by the lack of robust differences between the
two computational models. The differences between the SRN and PARSER
in accounting for the human data were a matter of degree, not of qualitative
difference. PARSER was able to account for more of the pairwise comparisons
in the human data (9/15) than the SRN (5/15), but this difference in amount of
comparisons simulated was not significant. Therefore, the meaningfulness of
the current findings will only be clear in the context of more research on other
L2 learning data, and ongoing research with the SRN and PARSER (and other
computational models) is being conducted in order to address these questions
across a variety of artificial language learning paradigms. Other computational
modeling using nonstatistical learning models (e.g., ACT-R; Anderson et al.,
2004) is also advisable, because the present results did not show robust evidence
of statistical learning.

Finally, the present study is limited in the way it coded input for both the
SRN and PARSER. As has been pointed out elsewhere (e.g., Chang et al., 2006;
Williams & Kuribara, 2008) it is fairly safe to assume that adult L2 learners
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have recourse to some knowledge of abstract syntactic categories and apply
this knowledge to their L2s. Indeed, the fact that participants in the present
experiment were able to generalize to new sentences implies the presence of
some kind of abstract knowledge. When combined with the fact that the study
was not about syntactic category induction from exemplars, it made the most
sense to code the input to the SRN and PARSER as abstract syntactic cate-
gories. Moreover, because connectionist models have been shown to form their
own linguistic categories (e.g., Elman, 1990), the operation of a SRN on ab-
stract categories poses no theoretical problem. Likewise, it is not theoretically
problematic for PARSER to operate on abstract categories (Perruchet, 2005;
Perruchet & Gallego, 1997; Perruchet & Vinter, 2002). Indeed, the formation of
increasingly complex abstract syntactic chunks is a hallmark of several theories
of syntax, including construction grammar (e.g., Ellis, 2008; Goldberg, 2006;
Tomasello, 2003) and simpler syntax (Culicover & Jackendoff, 2006). How-
ever, PARSER cannot abstract categories from instances like a connectionist
network (it was not designed to do so) and, as such, using PARSER to simulate
syntactic development will only capture the learning of syntactic sequences,
not the learning of syntactic categories themselves. Future work will benefit
by addressing each of these issues, perhaps by training SRNs and PARSER on
surface content instead of abstract syntactic categories, or by using models that
are better able to form categories from instances.

Despite its limitations, the present study offers novel advances on previous
research in statistical learning and SLA. It extends previous work comparing
computational models of statistical learning (e.g., Boucher & Dienes, 2003;
Giroux & Rey, 2009; Perruchet & Peereman, 2004) to a novel domain: adult
learning of L2 syntax. In doing so, it also extends previous research using
connectionist networks, especially SRNs, to investigate L2 syntactic develop-
ment (e.g., Williams, 2010; Williams & Kuribara, 2008). In conclusion, this
study brings to light new and important questions regarding the mechanisms
of statistical learning in L2 development. The present evidence suggests chunk
formation may play a role in L2 syntactic development, but it also underscores
the need for more work using the competing predictions of different computa-
tional models in order to elucidate L2 learning mechanisms.

Final revised version accepted 16 September 2013

Notes

1 Perruchet (2005; Perruchet & Vinter, 2002) have noted that the attended information
in chunks may be considered to be isomorphic with the contents of subjective
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phenomenal awareness. I remain agnostic on this position at present. However, it is
an important theoretical design feature that sets PARSER apart from many other
computational models, which do not provide any role for awareness in learning.

2 The semiartificial language paradigm was used for two reasons. The first was
comparability with previous studies looking at the mechanisms of L2 syntactic
development (e.g., Williams, 2010). The second reason was a practical choice:
Using semiartificial languages reduces the duration of the experiment, since the
words are usually in participants’ native language, they need not be pre-trained on
vocabulary.

3 Syntactic phrase/category is used here only to denote a lexical constituent or
constituents that constitute a single syntactic phrase in English. It may be that
participants process argument roles or some more basic category structures rather
than syntactic categories, per se.

4 This may lead to alignment differences for combining the syntactic information in
the lexicon of one language with the syntactic information from the syntax of the
other. Whether or not this manifests as a problem is an empirical question that needs
to be investigated.

5 Incremental transitional probabilities were also tracked (e.g., the probability of T →
S was .67, the probability of TS→P was .5, the probability of TSP→O was 1.0, and
so on), but statistical analyses revealed no significant effect of incremental
transitional probability on reading times (all ps > .10).

6 This coding scheme was adopted for comparability with Williams’s (2010; Williams
& Kuribara, 2008) coding of the SRN. The same simulations were done without
explicitly coding the beginnings and ends of the sequences this way and the results
were essentially the same as those reported here.

7 Thanks to one of the anonymous reviewers for suggesting this analysis.
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